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Abstract In this paper, a necessary condition is first
presented for the existence of limit cycles in nonlinear
systems, then four theorems are presented for the sta-
bility, instability, and semistabilities of limit cycles in
second order nonlinear systems. Necessary and suffi-
cient conditions are given in terms of the signs of first
and second derivatives of a continuously differentiable
positive function at the vicinity of the limit cycle. Two
examples considering nonlinear systems with familiar
limit cycles are presented to illustrate the theorems.

Keywords Limit cycle · Existence · Stability ·
Nonlinear systems · First and second derivatives

1 Introduction

The existence of limit cycles and their stability analy-
sis in nonlinear systems have always been of inter-
est for mathematicians and dynamic system engineers.
Since Van der Pol studied a second order nonlinear
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differential equation and proved that the system had
a limit cycle, his results have been extended by many
researchers. Although there have been extensive re-
searches in this field, but the nonlinear characteristics
of these systems have made the distinguished results
very limited. There are some limited numbers of the-
orems regarding the existence of limit cycles in non-
linear systems. According to the Poincaré theorem, for
second-order autonomous differential equations in the
form of dx(t)/dt = f (x), if a limit cycle exists, then
N = S + 1, where N is the number of nodes, centers,
and foci enclosed by a limit cycle, and S is the number
of enclosed saddle points [1]. Another theorem pre-
sented by Poincaré and Bendixson is concerned with
the asymptotic properties of the trajectories of second
order systems [2]. Bendixson also presented a theo-
rem as a sufficient condition for nonexistence of limit
cycles [3]. According to this theorem, for a second or-
der nonlinear system in the form of dx(t)/dt = f (x),
where f (x) = [f1(x) f2(x)]T, no limit cycle exists in
a region where ∂f1/∂x1 +∂f2/∂x2 does not vanish and
does not change sign [3]. Dragilev proposed some the-
orems regarding the existence of a stable (unstable)
limit cycle for the Liénard equation [4, 5]. In [6], a
survey regarding the researches done since 1882 with
the main subject of limit cycles is presented. It con-
tains more than 300 published papers or books.

In this paper, we first present a necessary condi-
tion for the existence of limit cycles, then we present
four theorems for the stability, instability, and semista-

mailto:ghaffari@kntu.ac.ir


270 A. Ghaffari et al.

bilities of limit cycles in second order nonlinear sys-
tems. Necessary and sufficient conditions are proven
and two examples are given to illustrate them. Two re-
gions are defined inside and outside of a limit cycle
where the stability of the limit cycle depends on the
signs of the first and second derivatives of a positive
function in these regions. Since the terms “inside and
outside of a closed curve” is only defined for second-
order systems [7], therefore, the stability theorems are
limited to this class of nonlinear systems.

2 A necessary condition for existence of limit
cycles

Consider an autonomous unforced nonlinear system:

dx(t)/dt = f (x) f : D → Rn (1)

where D is an open and connected subset of Rn and
f is a locally Lipschitz map from D into Rn. Let the
point x = xe = 0 be an equilibrium point of (1) and
assume that L is a limit cycle of (1) and g(x) = 0 be
the equation of the limit cycle L.

If g(x) is a continuously differentiable function (on
the limit cycle L and at its vicinity), then there exists a
continuously differentiable scalar function V (x) ≥ 0,
V : D → R at the vicinity of the limit cycle such that
on the limit cycle we have:

dV (x)/dt = d2V (x)/dt2 = 0 (2)

for all x ∈ L.

2.1 Proof

A limit cycle is defined as an isolated closed curve,
where any trajectory started on this curve will stay
on it forever [8]. In other words, trajectories on the
limit cycle never leave it. Since g(x) = 0 represents
the equation of the limit cycle and g(x) is assumed
to be a continuously differentiable function, therefore,
according to the invariant set theorem [8], we have

dg(x)/dt = 0 (3)

for all x ∈ L.
Note that on the limit cycle we also have

d2g(x)/dt2 = 0 (4)

We prove this by contradiction. Let d2g(x)/dt2 $= 0 in
the whole region or some part of the limit cycle. Then

it follows that dg(x)/dt changes from zero in this re-
gion. It contradicts the fact that dg(x)/dt is always
zero on the limit cycle as stated in (3). Let’s define the
function V (x) ≥ 0 on the limit cycle and at its vicinity
as:

V (x) =
[
g(x) − g(0)

]n (5)

where n is an arbitrary positive even integer, and g(0)

is the value of g(x) at the equilibrium point x = 0.
With this definition, clearly V (x) is a positive scalar
continuously differentiable function. Now we calcu-
late the first and second time derivatives of V (x) to
show that they are zero on the limit cycle L.

dV (x)/dt = n
[
g(x) − g(0)

]n−1 · dg(x)/dt (6)

d2V (x)/dt2 = n(n − 1)
[
g(x) − g(0)

]n−2

·
(
dg(x)/dt

)2

+n
[
g(x) − g(0)

]n−1

·d2g(x)/dt2 (7)

The first derivative dV (x)/dt in (6) is zero on the limit
cycle since dg(x)/dt is zero. Also, the second deriva-
tive d2V (x)/dt2 in (7) is zero since both dg(x)/dt in
the first term of the right-hand side and d2g(x)/dt2 in
the second term are zero according to (3) and (4).

2.2 Some remarks about V (x)

1. Note that the function V (x) in this theorem is not
unique. Any continuously differentiable positive
function with its first and second derivatives equal
to zero only on the limit cycle can be considered as
V (x).

2. It is also important to note that if V (x) ≤ 0, it is
still possible to draw the conclusion of dV (x)/dt =
d2V (x)/dt2 = 0 for all x ∈ L. However, we con-
sider V (x) ≥ 0, since we need this condition when
we are analyzing the stability of limit cycles in the
next section.

3. If [g(x) − g(0)] ≥ 0, then we may set n = 1 in (5)
and we have

V (x) =
[
g(x) − g(0)

]
(8)

4. Note that the function V (x) should be selected to
be constant only on the limit cycle. At the vicinity
of the limit cycle, V (x) is a function of the state
variables of the system, and is not constant.
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Fig. 1 Two Regions φ1 and φ2 (outside and inside vicinities) of
the limit cycle L in the phase plane

3 Stability analyses of limit cycles

Here, we present the necessary and sufficient condi-
tions for the stability, instability, and semi-stabilities
of limit cycles. However, we first prove the sufficiency
of the theorems and then we prove that these theorems
are also necessary conditions. In order to present these
theorems, we need to investigate and evaluate the signs
of both dV (x)/dt and d2V (x)/dt2 at the vicinity of a
limit cycle L. However, since in this part we deal with
the concept of inside and outside of a limit cycle, we
limit ourselves to second order nonlinear systems and
we assume that in (1), we have n = 2. Let us define
two regions at the outside and inside vicinities of the
limit cycle L. Figure 1 shows the limit cycle L and the
regions φ1 and φ2 as the outside and inside vicinities
of the limit cycle, respectively.

The closed and bounded set φ1, as the region out-
side the limit cycle, is defined such that any point
Xφ1 in φ1 is a member of the neighborhood Br1(XL)

where XL is an arbitrary point on the limit cycle and
we have ‖Xφ1 − XL‖ < r1 and ‖Xφ1‖ > ‖XL‖. The
quantity r1 is the radius of a circle indicating the
neighborhood radius. Note that with this definition any
point in φ1 is a member of Br1(XL) but any point at
the neighborhood of XL does not necessarily belong
to φ1. A similar procedure is used to define φ2 as the
inside vicinity of the limit cycle. Based on the above
expressions, we now present the stability theorems for
limit cycles.

4 Theorem 1: stability of limit cycles

The limit cycle L is stable if and only if the signs of
dV (x)/dt and d2V (x)/dt2 at the vicinities φ1 and φ2
of the limit cycle L are:

dV (x)/dt < 0, d2V (x)/dt2 > 0 (9)

outside limit cycle and at its vicinity in region φ1 (ex-
cept on the limit cycle, where both derivatives are
zero)

dV (x)/dt > 0, d2V (x)/dt2 < 0 (10)

inside limit cycle and at its vicinity in region φ2 (ex-
cept on the limit cycle, where both derivatives are
zero).

Here V (x) is the positive continuously differen-
tiable function as defined in Sect. 2.

4.1 Proof

In the first step, we prove the sufficiency of the theo-
rem. According to Sect. 2, there exists a scalar positive
continuously differentiable function V (x) at the vicin-
ity of the limit cycle L such that on the limit cycle we
have dV (x)/dt = d2V (x)/dt2 = 0. To prove the sta-
bility of the limit cycle, we show that if inequalities (9)
and (10) hold, all the trajectories in the vicinity of the
limit cycle both in regions φ1 and φ2, will converge to
the limit cycle.

1. Region φ1 outside limit cycle L:

Let us first consider trajectories in region φ1 (out-
side limit cycle and at its vicinity). In this region, ac-
cording to (9), we have dV (x)/dt < 0 and d2V (x)/

dt2 > 0. Thus, V (x) is positive decreasing and
dV (x)/dt is a negative increasing function along
trajectory. Noting that on the limit cycle we have
dV (x)/dt = 0, therefore, trajectories in region φ1
will converge to the limit cycle, as t → ∞. Also
note that according to Barbalat’s lemma, V (x) is uni-
formly continuous since its derivative dV (x)/dt is
bounded [8].

2. Region φ2 inside limit cycle L:

In this region, according to (10), we have dV (x)/

dt > 0 and d2V (x)/dt2 < 0. Therefore, V (x) is posi-
tive increasing and dV (x)/dt is a positive decreasing
function along any trajectory. Noting that on the limit
cycle we have dV (x)/dt = 0, thus trajectories in re-
gion φ2 will converge to the limit cycle as t → ∞.

An important point to be determined is the signs
of these derivatives at the vicinity of the equilibrium
point. Note that according to the Poincaré theorem
[1], inside the limit cycle there exists an equilibrium
point. (In our case, the point x = 0 is assumed to
be the equilibrium point of the nonlinear system (1).)
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For a stable limit cycle, the equilibrium point is un-
stable and trajectories at its vicinity diverge from it
and converge to the limit cycle. Therefore, inside limit
cycle, both at the vicinity of the equilibrium point
and in region φ2, we have dV (x)/dt > 0. However,
dV (x)/dt is zero both at the equilibrium point and
on the limit cycle. Nothing that dV (x)/dt is a con-
tinuously differentiable function, thus there must be a
point inside limit cycle where dV (x)/dt is maximum.
Clearly, at this point, d2V (x)/dt2 = 0 and at this point
the sign of d2V (x)/dt2 changes. In fact, this point is
on the lower boundary of φ2. This completes the suffi-
ciency of the stability theorem of the limit cycles. We
proceed with the instability and semistability theorems
and then we prove the necessity of each theorem.

5 Theorem 2: instability of limit cycles

The limit cycle L is unstable if and only if the signs of
dV (x)/dt and d2V (x)/dt2 at the vicinities φ1 and φ2
of the limit cycle L are

dV (x)/dt > 0, d2V (x)/dt2 > 0 (11)

outside limit cycle and at its vicinity in region φ1 (ex-
cept on the limit cycle, where both derivatives are
zero)

dV (x)/dt < 0, d2V (x)/dt2 < 0 (12)

inside limit cycle and at its vicinity in region φ2 (ex-
cept on the limit cycle, where both derivatives are
zero).

Here V (x) is the positive continuously differen-
tiable function as defined in Sect. 2.

5.1 Proof

Outside limit cycle and at its vicinity in region φ1, as
given by (11), we have dV (x)/dt > 0 and d2V (x)/

dt2 > 0. Therefore, dV (x)/dt is a positive increasing
function and it does not converge to zero. Noting that
on the limit cycle, we have dV (x)/dt = 0, therefore,
trajectories in φ1 do not converge to the limit cycle. It
means that either the limit cycle is unstable or semi-
stable.

Inside limit cycle in region φ2, as given by (12),
we have dV (x)/dt < 0 and d2V (x)/dt2 < 0. It means
that as time proceeds, the negative function dV (x)/dt

becomes smaller and smaller. Therefore, it does not
converge to zero. So, trajectories in φ2 do not con-
verge to the limit cycle. This completes the sufficiency
of the instability theorem. Similar arguments may be
given for the signs of dV (x)/dt and d2V (x)/dt2 in-
side an unstable limit cycle and at the vicinity of the
equilibrium point. Since the equilibrium is stable in
the sense of Lyapunov, therefore, dV (x)/dt is nega-
tive inside limit cycle. However, it is zero both at the
equilibrium point and on the limit cycle. Noting that
dV (x)/dt is a continuous function it has a minimum
inside limit cycle. The point that dV (x)/dt is mini-
mum, is located on the lower boundary of φ2. At this
point, d2V (x)/dt2 = 0 and its sign changes.

Before we proceed with our discussion, it should
be noticed that depending on the motion pattern of tra-
jectories in the vicinity of a limit cycle, two types of
semistable limit cycles maybe defined. In the next sec-
tion, we will define them.

6 Definitions of semi-stable limit cycle

By definition, a limit cycle is semistable if some of the
trajectories in the vicinity converge to it and the others
diverge from it as t → ∞ [8]. Based on this defini-
tion, we may have two different trajectory patterns for
second order systems at the vicinity of a limit cycle,
where both of them indicate semistable limit cycles.

Definition 1 A limit cycle is defined to be semi-stable
type-1, if the trajectories outside limit cycle converge
to it and those inside limit cycle diverge from it as t →
∞.

Definition 2 A limit cycle is defined to be semi-stable,
type-2, if the trajectories outside limit cycle diverge
from it and those inside limit cycle converge to it as
t → ∞.

Based on these definitions, the two semistability
theorems for limit cycles are presented here.

7 Theorem 3: semistability type-1 of limit cycles

The limit cycle L is semistable type-1 if and only if the
signs of dV (x)/dt and d2V (x)/dt2 at the vicinities φ1
and φ2 of the limit cycle L are

dV (x)/dt < 0, d2V (x)/dt2 > 0 (13)
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outside limit cycle and at its vicinity in region φ1 (ex-
cept on the limit cycle, where both derivatives are
zero)

dV (x)/dt < 0, d2V (x)/dt2 < 0 (14)

inside limit cycle and at its vicinity in region φ2 (ex-
cept on the limit cycle, where both derivatives are
zero)

7.1 Proof

The inequality (13) is the same as (9). Thus, the tra-
jectories outside limit cycle have the same pattern as
stable limit cycle and they converge to the limit cy-
cle. Similarly, the inequality (14) is the same as (12).
Therefore, the trajectories inside the limit cycle have
the same pattern as unstable limit cycles and they di-
verge from it. Therefore, the limit cycle is semistable
type-1 as stated by Definition 1. It is important to note
that according to semistability Theorem 1, dV (x)/dt

is always negative at the vicinity of the limit cycle and
it is zero on the limit cycle. It means that the equation
dV (x)/dt = 0 has repeated roots on the limit cycle.

8 Theorem 4: semistability type-2 of limit cycles

The limit cycle L is semistable type-2 if and only if the
signs of dV (x)/dt and d2V (x)/dt2 at the vicinities φ1
and φ2 of the limit cycle L are

dV (x)/dt > 0, d2V (x)/dt2 > 0 (15)

outside limit cycle and at its vicinity in region φ1 (ex-
cept on the limit cycle, where both derivatives are
zero)

dV (x)/dt > 0, d2V (x)/dt2 < 0 (16)

inside limit cycle and at its vicinity in region φ2 (ex-
cept on the limit cycle, where both derivatives are
zero).

8.1 Proof

The proof is straightforward. The inequality (15) is
the same as (11). Thus, trajectories outside limit cycle
have the same pattern as unstable limit cycles and they
diverge from it as t → ∞. Similarly, the inequality

(16) is the same as (10). Thus, trajectories inside the
limit cycle have the same pattern as stable limit cycles
and they converge to the limit cycle as t → ∞. There-
fore, the limit cycle is semistable, type-2 as stated
by Definition 2. Note that in this case the function
dV (x)/dt is positive both inside and outside limit cy-
cle, but is zero on the limit cycle. Therefore, the func-
tion dV (x)/dt = 0 has repeated roots on the limit
cycle.

9 Proof of necessities

Up to this point, we have proved the sufficiency of the
theorems. In order to prove their necessities, we in-
vestigate the trajectory patterns at the vicinity of a hy-
pothetical limit cycle and we determine the signs of
dV (x)/dt and d2V (x)/dt2 to match those trajectory
patterns. Since the scalar function V (x) is a positive
continuously differentiable function and also noting
that on the limit cycle both dV (x)/dt and d2V (x)/dt2

are zero, the trajectory patterns outside and inside a
limit cycle and the signs of dV (x)/dt and d2V (x)/dt2

for these trajectories are determined as follows:

9.1 Outside limit cycle (in region φ1)

In region φ1, two cases may happen:

1. Trajectories are diverging from the limit cycle then
both dV (x)/dt and d2V (x)/dt2 are positive.

2. Trajectories are converging to the limit cycle as
t → ∞, then dV (x)/dt is negative and d2V (x)/dt2

is positive.

9.2 Inside limit cycle (in region φ2)

In region φ2, two cases may happen:

1. Trajectories are converging to the limit cycle as
t → ∞, then dV (x)/dt is positive and d2V (x)/dt2

is negative.
2. Trajectories are diverging from the limit cycle then

both dV (x)/dt and d2V (x)/dt2 are negative.

Table 1 illustrates the acceptable signs for dV(x)/dt

and d2V (x)/dt2 both at the outside and inside vicini-
ties of a limit cycle. Considering all possible 16
cases for the signs of dV (x)/dt and d2V (x)/dt2 at
the vicinities of a hypothetical limit cycle, only four
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Table 1 Acceptable signs for dV (x)/dt and d2V (x)/dt2 at the
vicinity of a limit cycle in regions φ1 and φ2

Regions φ2 Regions φ1

dV (x)/dt + +
d2V (x)/dt2 − +
dV (x)/dt − −
d2V (x)/dt2 − +

cases are acceptable since the signs of dV (x)/dt and
d2V (x)/dt2 are among those in Table 1.

Signs of dV (x)/dt and d2V (x)/dt2 in Table 1,
comparing with the 16 possible cases for dV (x)/dt

and d2V (x)/dt2 in regions φ1 and φ2 indicate that
the signs of dV (x)/dt and d2V (x)/dt2, are the only
required information for the stability, instability, and
semistabilities of a limit cycle. This completes the ne-
cessities of the theorems.

10 Conclusion

In this paper, a necessary condition is first presented
for the existence of limit cycles in nonlinear systems.
Then four theorems are presented and proved as neces-
sary and sufficient conditions for the stability analysis
of limit cycles. The stability analysis depends on the
signs of first and second time derivatives of a continu-
ously differentiable positive function at the vicinity of
the limit cycles. Two examples of nonlinear systems
with familiar limit cycles illustrate the theorems and
their applications.

Appendix

The following examples represent four systems which
have limit cycles [8, 9].

Example 1

dx1/dt = x2 + k1x1
(
x2

1 + x2
2 − β2)

dx2/dt = −x1 + k2x2
(
x2

1 + x2
2 − β2)

such that β $= 0 and k1 = k2 = +1 or k1 = k2 = −1
the point x1 = 0, x2 = 0 is the equilibrium point of the
system. Let’s define the positive continuously differ-
entiable function V (x) as:

V (x) = x2
1 + x2

2

then we have:

dV (x)/dt = 2
(
x2

1 + x2
2 − β2)(k1x

2
1 + k2x

2
2
)

d2V (x)/dt2 = 4
(
x2

1 + x2
2 − β2)[2k1x

4
1 + 2k2x

4
2

+ (k1 + k2)
2x2

1x2
2 − β2(k2

1x2
1 + k2

2x2
2
)]

According to the stability theorem (Sect. 4) and insta-
bility theorem (Sect. 5) and (9), (10), (11), and (12),
we can determine the stability or instability of the limit
x2

1 + x2
2 − β2. We have

For k1 = k2 = −1, the limit cycle x2
1 + x2

2 − β2 is
stable.

For k1 = k2 = +1, the limit cycle x2
1 + x2

2 − β2 is
unstable.

Example 2

dx1/dt = x2 + k1x1
(
x2

1 + x2
2 − β2)2

dx2/dt = −x1 + k2x2
(
x2

1 + x2
2 − β2)2

such that β $= 0 and k1 = k2 = +1 or k1 = k2 = −1
the point x1 = 0, x2 = 0 is the equilibrium point of the
system. Let’s define the positive continuously differ-
entiable function V (x) as

V (x) = x2
1 + x2

2

then we have

dV (x)/dt = 2
(
x2

1 + x2
2 − β2)2(

k1x
2
1 + k2x

2
2
)

d2V (x)/dt2 = 8
(
x2

1 + x2
2 − β2)3(

k1x
2
1 + k2x

2
2
)2

+ 4(x2
1 + x2

2 − β2)4(k2
1x2

1 + k2
2x2

2
)

According to the semistability theorems (Sects. 7
and 8) and (13), (14), (15), and (16), we can deter-
mine the semistabilities of the limit x2

1 + x2
2 − β2. We

have
For k1 = k2 = −1, the limit cycle x2

1 + x2
2 − β2 is

semistable type-1.
For k1 = k2 = +1, the limit cycle x2

1 + x2
2 − β2 is

semistable type-2.
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