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Abstract In this paper, a necessary condition is first
presented for the existence of limit cycles in nonlinear
systems, then four theorems are presented for the sta-
bility, instability, and semistabilities of limit cycles in
second order nonlinear systems. Necessary and suffi-
cient conditions are given in terms of the signs of first
and second derivatives of a continuously differentiable
positive function at the vicinity of the limit cycle. Two
examples considering nonlinear systems with familiar
limit cycles are presented to illustrate the theorems.

Keywords Limit cycle - Existence - Stability -
Nonlinear systems - First and second derivatives

1 Introduction

The existence of limit cycles and their stability analy-
sis in nonlinear systems have always been of inter-
est for mathematicians and dynamic system engineers.
Since Van der Pol studied a second order nonlinear
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differential equation and proved that the system had
a limit cycle, his results have been extended by many
researchers. Although there have been extensive re-
searches in this field, but the nonlinear characteristics
of these systems have made the distinguished results
very limited. There are some limited numbers of the-
orems regarding the existence of limit cycles in non-
linear systems. According to the Poincaré theorem, for
second-order autonomous differential equations in the
form of dx(t)/dt = f(x), if a limit cycle exists, then
N =S + 1, where N is the number of nodes, centers,
and foci enclosed by a limit cycle, and S is the number
of enclosed saddle points [1]. Another theorem pre-
sented by Poincaré and Bendixson is concerned with
the asymptotic properties of the trajectories of second
order systems [2]. Bendixson also presented a theo-
rem as a sufficient condition for nonexistence of limit
cycles [3]. According to this theorem, for a second or-
der nonlinear system in the form of dx(¢)/dt = f(x),
where f(x) =[f1(x) f2(x)]T, no limit cycle exists in
aregion where df1/0x1 4 df2/dx2 does not vanish and
does not change sign [3]. Dragilev proposed some the-
orems regarding the existence of a stable (unstable)
limit cycle for the Liénard equation [4, 5]. In [6], a
survey regarding the researches done since 1882 with
the main subject of limit cycles is presented. It con-
tains more than 300 published papers or books.

In this paper, we first present a necessary condi-
tion for the existence of limit cycles, then we present
four theorems for the stability, instability, and semista-
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bilities of limit cycles in second order nonlinear sys-
tems. Necessary and sufficient conditions are proven
and two examples are given to illustrate them. Two re-
gions are defined inside and outside of a limit cycle
where the stability of the limit cycle depends on the
signs of the first and second derivatives of a positive
function in these regions. Since the terms “inside and
outside of a closed curve” is only defined for second-
order systems [7], therefore, the stability theorems are
limited to this class of nonlinear systems.

2 A necessary condition for existence of limit
cycles

Consider an autonomous unforced nonlinear system:

dx(t)/dt = f(x) f:D— R" €))

where D is an open and connected subset of R" and
f is a locally Lipschitz map from D into R". Let the
point x = x, = 0 be an equilibrium point of (1) and
assume that L is a limit cycle of (1) and g(x) =0 be
the equation of the limit cycle L.

If g(x) is a continuously differentiable function (on
the limit cycle L and at its vicinity), then there exists a
continuously differentiable scalar function V (x) > 0,
V : D — R at the vicinity of the limit cycle such that
on the limit cycle we have:

dV(x)/dt =d*V (x)/dt>* =0 )
forallx € L.

2.1 Proof

A limit cycle is defined as an isolated closed curve,
where any trajectory started on this curve will stay
on it forever [8]. In other words, trajectories on the
limit cycle never leave it. Since g(x) = 0 represents
the equation of the limit cycle and g(x) is assumed
to be a continuously differentiable function, therefore,
according to the invariant set theorem [8], we have

dg(x)/dt =0 3

forall x € L.
Note that on the limit cycle we also have

d*>g(x)/di* =0 4)

We prove this by contradiction. Let d?g(x)/dt> # 0 in
the whole region or some part of the limit cycle. Then
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it follows that dg(x)/dt changes from zero in this re-
gion. It contradicts the fact that dg(x)/dt is always
zero on the limit cycle as stated in (3). Let’s define the
function V (x) > 0 on the limit cycle and at its vicinity
as:

V(x)=[gx) —g®]" ®)

where 7 is an arbitrary positive even integer, and g(0)
is the value of g(x) at the equilibrium point x = 0.
With this definition, clearly V (x) is a positive scalar
continuously differentiable function. Now we calcu-
late the first and second time derivatives of V(x) to
show that they are zero on the limit cycle L.

dV (x)/dt =n[g(x) — gO]"" - dg(x)/dt ©6)
d?V (x)/di® = n(n — D[g(x) — g@]"
(dg(o)/dr)?
+n[gx) —g@]""
-d?g(x)/dt? (N

The first derivative d V (x)/dt in (6) is zero on the limit
cycle since dg(x)/dt is zero. Also, the second deriva-
tive d>V (x)/dt? in (7) is zero since both dg(x)/dt in
the first term of the right-hand side and d?g(x)/dt? in
the second term are zero according to (3) and (4).

2.2 Some remarks about V (x)

1. Note that the function V (x) in this theorem is not
unique. Any continuously differentiable positive
function with its first and second derivatives equal
to zero only on the limit cycle can be considered as
V(x).

2. It is also important to note that if V(x) <0, it is
still possible to draw the conclusion of dV (x)/dt =
sz(x)/dt2 =0 for all x € L. However, we con-
sider V(x) > 0, since we need this condition when
we are analyzing the stability of limit cycles in the
next section.

3. If [g(x) — g(0)] > 0, then we may set n =1 in (5)
and we have

V(x) =[g(x) —g(0)] ®

4. Note that the function V (x) should be selected to
be constant only on the limit cycle. At the vicinity
of the limit cycle, V(x) is a function of the state
variables of the system, and is not constant.
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Fig.1 Two Regions ¢ and ¢, (outside and inside vicinities) of
the limit cycle L in the phase plane

3 Stability analyses of limit cycles

Here, we present the necessary and sufficient condi-
tions for the stability, instability, and semi-stabilities
of limit cycles. However, we first prove the sufficiency
of the theorems and then we prove that these theorems
are also necessary conditions. In order to present these
theorems, we need to investigate and evaluate the signs
of both dV (x)/dt and d*V (x)/dt? at the vicinity of a
limit cycle L. However, since in this part we deal with
the concept of inside and outside of a limit cycle, we
limit ourselves to second order nonlinear systems and
we assume that in (1), we have n = 2. Let us define
two regions at the outside and inside vicinities of the
limit cycle L. Figure 1 shows the limit cycle L and the
regions ¢ and ¢, as the outside and inside vicinities
of the limit cycle, respectively.

The closed and bounded set ¢1, as the region out-
side the limit cycle, is defined such that any point
X¢1 in ¢ is a member of the neighborhood Bry(Xp)
where X is an arbitrary point on the limit cycle and
we have || X¢1 — X || <rp and || X1l > || XL]. The
quantity r; is the radius of a circle indicating the
neighborhood radius. Note that with this definition any
point in ¢ is a member of Bri(X) but any point at
the neighborhood of X; does not necessarily belong
to ¢1. A similar procedure is used to define ¢, as the
inside vicinity of the limit cycle. Based on the above
expressions, we now present the stability theorems for
limit cycles.

4 Theorem 1: stability of limit cycles

The limit cycle L is stable if and only if the signs of
dV (x)/dt and d*V (x)/dr? at the vicinities ¢; and ¢»
of the limit cycle L are:

dV(x)/dt <0, d*V(x)/dt* > 0 )

outside limit cycle and at its vicinity in region ¢ (ex-
cept on the limit cycle, where both derivatives are
Zero)

dV(x)/dt > 0, d*V(x)/di* <0 (10
inside limit cycle and at its vicinity in region ¢, (ex-
cept on the limit cycle, where both derivatives are
Z€ro0).

Here V(x) is the positive continuously differen-
tiable function as defined in Sect. 2.

4.1 Proof

In the first step, we prove the sufficiency of the theo-
rem. According to Sect. 2, there exists a scalar positive
continuously differentiable function V (x) at the vicin-
ity of the limit cycle L such that on the limit cycle we
have dV (x)/dt = d*V (x)/dt* = 0. To prove the sta-
bility of the limit cycle, we show that if inequalities (9)
and (10) hold, all the trajectories in the vicinity of the
limit cycle both in regions ¢; and ¢,, will converge to
the limit cycle.

1. Region ¢ outside limit cycle L:

Let us first consider trajectories in region ¢; (out-
side limit cycle and at its vicinity). In this region, ac-
cording to (9), we have dV(x)/dt < 0 and d2V(x)/
dt> > 0. Thus, V(x) is positive decreasing and
dV(x)/dt is a negative increasing function along
trajectory. Noting that on the limit cycle we have
dV(x)/dt = 0, therefore, trajectories in region ¢
will converge to the limit cycle, as + — oco. Also
note that according to Barbalat’s lemma, V (x) is uni-
formly continuous since its derivative dV (x)/dt is
bounded [8].

2. Region ¢ inside limit cycle L:

In this region, according to (10), we have dV (x)/
dt > 0 and d?V (x)/dt* < 0. Therefore, V (x) is posi-
tive increasing and dV (x)/dt is a positive decreasing
function along any trajectory. Noting that on the limit
cycle we have dV (x)/dt = 0, thus trajectories in re-
gion ¢ will converge to the limit cycle as t — oo.

An important point to be determined is the signs
of these derivatives at the vicinity of the equilibrium
point. Note that according to the Poincaré theorem
[1], inside the limit cycle there exists an equilibrium
point. (In our case, the point x = 0 is assumed to
be the equilibrium point of the nonlinear system (1).)
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For a stable limit cycle, the equilibrium point is un-
stable and trajectories at its vicinity diverge from it
and converge to the limit cycle. Therefore, inside limit
cycle, both at the vicinity of the equilibrium point
and in region ¢, we have dV (x)/dt > 0. However,
dV(x)/dt is zero both at the equilibrium point and
on the limit cycle. Nothing that dV (x)/dt is a con-
tinuously differentiable function, thus there must be a
point inside limit cycle where dV (x) /dt is maximum.
Clearly, at this point, d>V (x)/dt*> = 0 and at this point
the sign of d?V (x)/dt?> changes. In fact, this point is
on the lower boundary of ¢». This completes the suffi-
ciency of the stability theorem of the limit cycles. We
proceed with the instability and semistability theorems
and then we prove the necessity of each theorem.

5 Theorem 2: instability of limit cycles

The limit cycle L is unstable if and only if the signs of
dV (x)/dt and d>V (x)/dt* at the vicinities ¢1 and ¢,
of the limit cycle L are

dV(x)/dt > 0, d*V(x)/dt* > 0 (11)

outside limit cycle and at its vicinity in region ¢ (ex-
cept on the limit cycle, where both derivatives are
Zero)

dV(x)/dt <0, d*V(x)/di* <0 (12)

inside limit cycle and at its vicinity in region ¢» (ex-
cept on the limit cycle, where both derivatives are
Z€ero).

Here V(x) is the positive continuously differen-
tiable function as defined in Sect. 2.

5.1 Proof

Outside limit cycle and at its vicinity in region ¢y, as
given by (11), we have dV (x)/dt > 0 and d*V(x)/
dt* > 0. Therefore, dV (x)/dt is a positive increasing
function and it does not converge to zero. Noting that
on the limit cycle, we have dV (x)/dt = 0, therefore,
trajectories in ¢; do not converge to the limit cycle. It
means that either the limit cycle is unstable or semi-
stable.

Inside limit cycle in region ¢;, as given by (12),
we have dV (x)/dt < 0and d?V (x)/dt* < 0. It means
that as time proceeds, the negative function dV (x)/dt
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becomes smaller and smaller. Therefore, it does not
converge to zero. So, trajectories in ¢ do not con-
verge to the limit cycle. This completes the sufficiency
of the instability theorem. Similar arguments may be
given for the signs of dV (x)/dt and d*V (x)/dt? in-
side an unstable limit cycle and at the vicinity of the
equilibrium point. Since the equilibrium is stable in
the sense of Lyapunov, therefore, dV (x)/dt is nega-
tive inside limit cycle. However, it is zero both at the
equilibrium point and on the limit cycle. Noting that
dV (x)/dt is a continuous function it has a minimum
inside limit cycle. The point that dV (x)/d¢t is mini-
mum, is located on the lower boundary of ¢,. At this
point, d*V (x)/dt*> = 0 and its sign changes.

Before we proceed with our discussion, it should
be noticed that depending on the motion pattern of tra-
jectories in the vicinity of a limit cycle, two types of
semistable limit cycles maybe defined. In the next sec-
tion, we will define them.

6 Definitions of semi-stable limit cycle

By definition, a limit cycle is semistable if some of the
trajectories in the vicinity converge to it and the others
diverge from it as t — oo [8]. Based on this defini-
tion, we may have two different trajectory patterns for
second order systems at the vicinity of a limit cycle,
where both of them indicate semistable limit cycles.

Definition 1 A limit cycle is defined to be semi-stable
type-1, if the trajectories outside limit cycle converge
to it and those inside limit cycle diverge from it as t —
0.

Definition 2 A limit cycle is defined to be semi-stable,
type-2, if the trajectories outside limit cycle diverge
from it and those inside limit cycle converge to it as
t — oQ.

Based on these definitions, the two semistability
theorems for limit cycles are presented here.

7 Theorem 3: semistability type-1 of limit cycles

The limit cycle L is semistable type-1 if and only if the
signs of dV (x)/dt and d*V (x)/dt? at the vicinities ¢
and ¢, of the limit cycle L are

dV(x)/dt <0, d*V(x)/di* > 0 (13)
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outside limit cycle and at its vicinity in region ¢ (ex-
cept on the limit cycle, where both derivatives are
ZEero)
dV(x)/dt <0, d*V(x)/dt* <0 (14)
inside limit cycle and at its vicinity in region ¢» (ex-
cept on the limit cycle, where both derivatives are
Z€ero)

7.1 Proof

The inequality (13) is the same as (9). Thus, the tra-
jectories outside limit cycle have the same pattern as
stable limit cycle and they converge to the limit cy-
cle. Similarly, the inequality (14) is the same as (12).
Therefore, the trajectories inside the limit cycle have
the same pattern as unstable limit cycles and they di-
verge from it. Therefore, the limit cycle is semistable
type-1 as stated by Definition 1. It is important to note
that according to semistability Theorem 1, dV (x)/dt
is always negative at the vicinity of the limit cycle and
it is zero on the limit cycle. It means that the equation
dV (x)/dt = 0 has repeated roots on the limit cycle.

8 Theorem 4: semistability type-2 of limit cycles

The limit cycle L is semistable type-2 if and only if the
signs of dV (x)/dt and d>V (x)/d1? at the vicinities ¢;
and ¢; of the limit cycle L are

dV(x)/dt > 0, d*V(x)/dt* >0 (15)

outside limit cycle and at its vicinity in region ¢ (ex-
cept on the limit cycle, where both derivatives are
Zero)

dV(x)/dt >0,  d*V(x)/dt* <0 (16)

inside limit cycle and at its vicinity in region ¢, (ex-
cept on the limit cycle, where both derivatives are
Z€ero).

8.1 Proof

The proof is straightforward. The inequality (15) is
the same as (11). Thus, trajectories outside limit cycle
have the same pattern as unstable limit cycles and they
diverge from it as + — oo. Similarly, the inequality

(16) is the same as (10). Thus, trajectories inside the
limit cycle have the same pattern as stable limit cycles
and they converge to the limit cycle as t — oco. There-
fore, the limit cycle is semistable, type-2 as stated
by Definition 2. Note that in this case the function
dV (x)/dt is positive both inside and outside limit cy-
cle, but is zero on the limit cycle. Therefore, the func-
tion dV(x)/dt = 0 has repeated roots on the limit
cycle.

9 Proof of necessities

Up to this point, we have proved the sufficiency of the
theorems. In order to prove their necessities, we in-
vestigate the trajectory patterns at the vicinity of a hy-
pothetical limit cycle and we determine the signs of
dV (x)/dt and d*V (x)/dt* to match those trajectory
patterns. Since the scalar function V (x) is a positive
continuously differentiable function and also noting
that on the limit cycle both d V (x)/dt and d*>V (x) /dt?
are zero, the trajectory patterns outside and inside a
limit cycle and the signs of dV (x)/dt and d*V (x) /dt*
for these trajectories are determined as follows:

9.1 Outside limit cycle (in region ¢1)

In region ¢1, two cases may happen:

1. Trajectories are diverging from the limit cycle then
both dV (x)/dt and d*>V (x)/dt? are positive.

2. Trajectories are converging to the limit cycle as
t — oo, then dV (x)/dt is negative and d*V (x) /dt>
is positive.

9.2 Inside limit cycle (in region ¢,)

In region ¢, two cases may happen:

1. Trajectories are converging to the limit cycle as
t — oo, then dV (x)/dt is positive and 4>V (x) /dt>
is negative.

2. Trajectories are diverging from the limit cycle then
both dV (x)/dt and d*V (x)/dt?* are negative.

Table 1 illustrates the acceptable signs for d V(x) /dt
and d°V (x)/dt? both at the outside and inside vicini-
ties of a limit cycle. Considering all possible 16
cases for the signs of dV (x)/dt and d*V (x)/dt? at
the vicinities of a hypothetical limit cycle, only four
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Table 1 Acceptable signs for dV (x)/dt and d>V (x)/dt* at the
vicinity of a limit cycle in regions ¢ and ¢»

Regions ¢» Regions ¢
dVv(x)/dt + +
d*V (x)/dt* - +
dV(x)/dt - —
d?V (x)/dt? - +

cases are acceptable since the signs of dV (x)/dt and
d?V (x)/dt? are among those in Table 1.

Signs of dV (x)/dt and d*V (x)/dt* in Table 1,
comparing with the 16 possible cases for dV (x)/dt
and d?V (x)/dt* in regions ¢ and ¢; indicate that
the signs of dV (x)/dt and dZV(x)/dt2, are the only
required information for the stability, instability, and
semistabilities of a limit cycle. This completes the ne-
cessities of the theorems.

10 Conclusion

In this paper, a necessary condition is first presented
for the existence of limit cycles in nonlinear systems.
Then four theorems are presented and proved as neces-
sary and sufficient conditions for the stability analysis
of limit cycles. The stability analysis depends on the
signs of first and second time derivatives of a continu-
ously differentiable positive function at the vicinity of
the limit cycles. Two examples of nonlinear systems
with familiar limit cycles illustrate the theorems and
their applications.

Appendix

The following examples represent four systems which
have limit cycles [8, 9].

Example 1

— 2 2 2
dxi/dt = x; —i—klxl(xl +x;—B )
dxp/dt = —x1 + kzxz(xlz +x§ — ,82)

such that B #£ 0 and k1 =ky =+1 or k) =k, = —1
the point x; = 0, xo = 0 is the equilibrium point of the
system. Let’s define the positive continuously differ-
entiable function V (x) as:

V(x) :x12 +x§
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then we have:
dV (x)/dt =2(x{ + x5 — B2) (ki x{ + kox3)
d*V (x)/dt* = 4(x] + x5 — B?)[2kix] + 2kox;
+ (ki + ko) xg — B2 (k] +k3a3)]

According to the stability theorem (Sect. 4) and insta-
bility theorem (Sect. 5) and (9), (10), (11), and (12),
we can determine the stability or instability of the limit
xlz + x% — B2. We have

For ki = kp = —1, the limit cycle xl2 + x% — ,32 is
stable.

For k| = ky = +1, the limit cycle x12 + x% — ﬂ2 is
unstable.

Example 2

dxy/dt = xp +kyx (x] + x5 — %)’

dxy/dt = —x1 + koxa (x] + x5 — B2)°

such that 8 #0 and k1 =k, =41 or ky =k = —1
the point x; = 0, x = 0 is the equilibrium point of the
system. Let’s define the positive continuously differ-
entiable function V (x) as

V(x)=x}4x3
then we have
AV (x)/dt =2(x} +x3 — B2)’ (kix? + kax)
d*V (x)/di> =8(x} + x3 — B%)’ (kix} + kax3)’
+4(xt +x3 — O (KIxT + k3x3)

According to the semistability theorems (Sects. 7
and 8) and (13), (14), (15), and (16), we can deter-
mine the semistabilities of the limit x% + x22 — B2 We
have

For ki = kp = —1, the limit cycle x12 + x% — ﬁ2 is
semistable type-1.

For k| = ky = +1, the limit cycle x12 + x% — ,82 is
semistable type-2.
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